SUGGESTED SOLUTION TO HOMEWORK 5

JUNHAO ZHANG

Problem 1. Let X and Y be Banach spaces and $T: X \to Y$ a one-to-one bounded linear operator. Show that $T^{-1}: T(X) \to X$ is bounded if and only if T(X) is closed.

Proof. \Rightarrow : Suppose $T^{-1}: T(X) \to X$ is bounded. For arbitrary $\{y_n\}_{n \ge 1} \subset T(X)$ which converges to $y \in Y$, we claim that there exists $x \in X$ such that y = T(x). Indeed, we define $x_n = T^{-1}(y_n)$, then

$$||x_n - x_m|| \le ||T^{-1}|| ||y_n - y_m||,$$

which implies that $\{x_n\}_{n\geq 1}$ is a Cauchy sequence in X, since X is a Banach space, there exists $x \in X$ such that $\{x_n\}_{n\geq 1}$ converges to x. Moreover, since for arbitrary $\varepsilon > 0$, there exists $N_1 \in \mathbb{N}$ such that for all $n > N_1$,

$$\|y_n - y\| < \varepsilon,$$

and there exists $N_2 \in \mathbb{N}$ such that for all $n > N_2$,

$$\|x_n - x\| < \|T\|^{-1}\varepsilon,$$

then for all $n > \max\{N_1, N_2\},\$

$$|y - T(x)|| \le ||y - y_n|| + ||T(x_n) - T(x)||$$

$$\le ||y - y_n|| + ||T|| ||x_n - x||$$

$$< 2\varepsilon,$$

which implies that y = T(x) by the arbitrariness of ε .

 \Leftarrow : Suppose T(X) is closed, since Y is a Banach space and $T(X) \subset Y$ is a subspace, we have T(X) is also a Banach space. Since $T: X \to Y$ is a injection, therefore $T: X \to T(X)$ is a bijection, then we have $T^{-1}: T(X) \to X$ is a bounded linear operator by the inverse mapping theorem. \Box

Problem 2. Let $(X, \|\cdot\|_1)$ and $(Y, \|\cdot\|_2)$ be normed spaces. We define a norm $\|\cdot\|$ on the vector space $X \times Y$ by

$$||(x,y)|| = \max\{||x||_1, ||y||_2\}.$$

(a) Show that $\|\cdot\|$ is indeed a norm on $X \times Y$ and the topology defined by this norm coincides with the product topology on $X \times Y$.

(b) Prove that if $(X, \|\cdot\|_1)$ and $(Y, \|\cdot\|_2)$ are Banach space, then $(X \times Y, \|\cdot\|)$ is a Banach space.

(c) Show that if $(X, \|\cdot\|_1)$ and $(Y, \|\cdot\|_2)$ are Banach space and $T: X \to Y$ is closed, then the Graph $G(T) = \{(x, Tx) : x \in X\}$ is a Banach space.

Proof. (a) We prove $\|\cdot\|$ is a norm. It is clear that $\|\cdot\|$ satisfies homogneity and $\|(0,0)\| = 0$, moreover, if $\|(x,y)\| = 0$, then

$$||x||_1 \le ||(x,y)||, ||y||_2 \le ||(x,y)||,$$

which implies that x = 0 and y = 0, therefore (x, y) = (0, 0). It suffices to prove that $\|\cdot\|$ satisfies the triangle inequality. Indeed, for arbitrary (x_1, y_1) and (x_2, y_2) ,

$$\begin{aligned} \|(x_1 + x_2, y_1 + y_2)\| &\leq \max\{\|x_1 + x_2\|_1, \|y_1 + y_2\|_2\} \\ &\leq \max\{\|x_1\|_1 + \|x_2\|_1, \|y_1\|_2 + \|y_2\|_2\} \\ &\leq \max\{\|x_1\|_1, \|y_1\|_2\} + \max\{\|x_2\|_1, \|y_2\|_2\} \\ &\leq \|(x_1, y_1)\| + \|(x_2, y_2)\|. \end{aligned}$$

We also claim that the topology defined by $\|\cdot\|$ coincides with the product topology on $X \times Y$. Indeed, on the one hand, let U and V be two open sets in Xand Y respectively, then for arbitrary $p := (x, y) \in U \times V$, since $x \in U$ and $y \in V$, there exist $r_1 > 0$ and $r_2 > 0$ such that $B_X(x, r_1) := \{x' \in X : \|x' - x\|_1 < r_1\} \subset U$ and $B_Y(y, r_2) := \{y' \in Y : \|y' - y\|_2 < r_2\} \subset V$, therefore for $r = \min\{r_1, r_2\}$, we have $B_{X \times Y}(p, r) := \{p' \in X \times Y : \|p' - p\| < r\} \subset U \times Y$, which implies that $U \times V$ is an open set under the topology induced by $\|\cdot\|$.

On the other hand, let $O \subset X \times Y$ be an open set under the topology induced by $\|\cdot\|$, for arbitrary $p \in O$, there exists r > 0 such that $B_{X \times Y}(p, r) := \{p' \in X \times Y : \|p' - p\| < r\} \subset O$, then $B_X(x, r) \times B_Y(y, r) \subset B_{X \times Y}(p, r) \subset O$, which implies p is a interior point under the product topology. By the arbitrariness of $p \in O$, we have O is also an open set under the product topology of $X \times Y$.

(b) Let $\{p_n := (x_n, y_n)\}_{n \ge 1}$ be a Cauchy sequence in $X \times Y$, then for arbitrary $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for n, m > N,

$$\|p_n - p_m\| < \varepsilon$$

which implies that

$$\|x_n - x_m\|_1 < \varepsilon, \quad \|y_n - y_m\| < \varepsilon,$$

which implies that $\{x_n\}_{n\geq 1}$ and $\{y_n\}_{n\geq 1}$ are Cauchy sequence in X and Y respectively. Since X and Y are Banach space, there exists $x \in X$ and $y \in Y$ such that there exist N_1 and N_2 such that for all $n > N_1$ and $n > N_2$,

$$||x_n - x||_1 < \varepsilon, \quad ||y_n - y||_2 < \varepsilon.$$

Denote p := (x, y), therefore for $n > \max\{N_1, N_2\}$,

$$||p_n - p|| = \max\{||x_n - x||_1, ||y_n - y||_2\} < \varepsilon,$$

which implies that p is a limit of $\{p_n\}_{n\geq 1}$.

(c) Since T is closed, therefore G(T) is a closed subspace in $X \times Y$. Since $X \times Y$ is a Banach space, therefore G(T) is also a Banach space.

Problem 3. Show that the space

$$Y = \{x \in C^1[0,1] : x(0) = 0\}$$

equipped with the sup-norm is not a Banach space.

Proof. For $n \in \mathbb{N}$, consider

$$x_n(t) = \sqrt{\left(t - \frac{1}{2}\right)^2 + \frac{1}{n} - \sqrt{\frac{1}{4} + \frac{1}{n}}},$$

then it is clear that $x_n \in Y$. We claim that $\{x_n\}_{n\geq 1}$ converges to the function $x(t) = |t - \frac{1}{2}| - \frac{1}{2}$ in the sup-norm. Indeed, by the triangle inequality,

$$|x_n(t) - x(t)| \le \left| \sqrt{\left(t - \frac{1}{2}\right)^2 + \frac{1}{n}} - \left|t - \frac{1}{2}\right| \right| + \left| \sqrt{\frac{1}{4} + \frac{1}{n}} - \frac{1}{2} \right| \le \frac{2\sqrt{n}}{n},$$

therefore for aribtrary $\varepsilon > 0$ and $n > 4\varepsilon^{-2}$, we have

$$\sup_{t\in[0,1]}|x_n(t)-x(t)|<\varepsilon,$$

for all $t \in [0, 1]$. However $x \notin Y$, which implies that Y is not a Banach space. *Email address:* jhzhang@math.cuhk.edu.hk